BM121: Sztuczna inteligencja zmienia szukanie odpowiedzi

Jun 5, 2024 · 1h 34m 19s
BM121: Sztuczna inteligencja zmienia szukanie odpowiedzi
Description

Czy wiesz, że obecna technologia osiągnęła już poziom 9-9,5 na 10 w obszarze odpowiadania na pytania? W dzisiejszym odcinku zagłębiamy się w świat question answering, czyli technologii, która pozwala maszynom...

show more
Czy wiesz, że obecna technologia osiągnęła już poziom 9-9,5 na 10 w obszarze odpowiadania na pytania? W dzisiejszym odcinku zagłębiamy się w świat question answering, czyli technologii, która pozwala maszynom rozumieć pytania i udzielać na nie trafnych odpowiedzi. Gościem jest Piotr Rybak. W rozmowie z Vladimirem Alekseichenko omowiają kluczowe aspekty rozwoju systemów odpowiadających na pytania oraz jakie wyzwania stoją przed twórcami tych rozwiązań.

Dowiesz się m.in.:
1. Jakie rewolucyjne zmiany zaszły w ostatnich latach w wyszukiwaniu dokumentów i wyciąganiu odpowiedzi 
2. Jaką rolę odgrywają duże modele językowe (LLM) w question answering?
3. Dlaczego jakość i ilość danych treningowych ma kluczowe znaczenie?
4. Jakie są kluczowe etapy budowy systemu question answering?
5. Z jakich kluczowych komponentów składa się system question answering? 
6. Jak dobrać odpowiednie dokumenty źródłowe i zadbać o kwestie dostępu i poufności 
7. Jakie triki można zastosować przy generowaniu finalnej odpowiedzi z dużego kontekstu?

W trakcie rozmowy poruszamy:

Przemiany, jakie zaszły w technologii question answering, to wynik zastosowania nowoczesnych sieci neuronowych i generatywnych modeli językowych. Dzisiejsze systemy są niezwykle skuteczne, umożliwiając użytkownikom szybkie uzyskanie odpowiedzi na pytania bez konieczności przeszukiwania setek dokumentów.

Jakość danych treningowych ma ogromne znaczenie. Im lepsze dane, tym bardziej precyzyjne odpowiedzi generuje system. Kluczowe jest też odpowiednie przygotowanie i przetworzenie tych danych, co wpływa na efektywność całego procesu.

Rozmowa dotyczy również praktycznych aspektów budowy systemów question answering - od wyboru odpowiednich dokumentów źródłowych, przez ekstrakcję i preprocessing danych, aż po wybór modelu wyszukiwania i generowania odpowiedzi. Istotne jest, aby systemy te były użyteczne nawet przy niepełnej dokładności, co może znacząco zaoszczędzić czas użytkowników.

Mimo rozwoju LLM, kluczowe kompetencje w budowaniu systemów AI pozostają takie same - liczy się dobranie odpowiednich narzędzi do realizacji celów i myślenie produktowe. 

Na koniec, Piotr i Vladimir omawiają znaczenie precyzyjnego zdefiniowania celów i wymagań przed rozpoczęciem budowy systemu. Bez tego, nawet najlepsze technologie mogą nie przynieść oczekiwanych rezultatów.

Subskrybuj kanał, aby być na bieżąco z najnowszymi trendami w świecie technologii i sztucznej inteligencji! Postaw też dobrą ocenę :).🔔
show less
Information
Author Vladimir Alekseichenko
Organization Vladimir
Website biznesmysli.pl
Tags

Looks like you don't have any active episode

Browse Spreaker Catalogue to discover great new content

Current

Podcast Cover

Looks like you don't have any episodes in your queue

Browse Spreaker Catalogue to discover great new content

Next Up

Episode Cover Episode Cover

It's so quiet here...

Time to discover new episodes!

Discover
Your Library
Search