Inference Scaling for Long-Context RAG
Sign up for free
Listen to this episode and many more. Enjoy the best podcasts on Spreaker!
Download and listen anywhere
Download your favorite episodes and enjoy them, wherever you are! Sign up or log in now to access offline listening.
Description
🗓 Inference Scaling for Long-Context Retrieval Augmented Generation This research paper explores the effectiveness of inference scaling for retrieval augmented generation (RAG), a technique that enhances large language models (LLMs)...
show moreThis research paper explores the effectiveness of inference scaling for retrieval augmented generation (RAG), a technique that enhances large language models (LLMs) by incorporating external knowledge. The authors introduce two strategies, demonstration-based RAG (DRAG) and iterative demonstration-based RAG (IterDRAG), for effectively scaling inference computation. They demonstrate that increasing inference computation, when optimally allocated, leads to nearly linear gains in RAG performance. Furthermore, they develop a computation allocation model to predict the optimal test-time compute allocation for various tasks and scenarios, showcasing its effectiveness in achieving performance gains and aligning with experimental results.
📎 Link to paper
Information
Author | Shahriar Shariati |
Organization | Shahriar Shariati |
Website | - |
Tags |
Copyright 2024 - Spreaker Inc. an iHeartMedia Company